
Superoscillations

At the end of class this week, we talked a little bit about “superoscillations” and their potential use in
radar for mine detection. Lets quickly recap what these are.

Let f(t) denote some signal (i.e., a real-valued, square-integrable function of one variable), and consider
taking its Fourier transform. To make things easier, lets take f : [0, 1]→ R and enforce Dirichlet boundary
conditions f(0) = f(1) = 0. In this case, we may represent f via a discrete Fourier series:

f(t) =

∞∑
n=1

fnφn(t) ; φn(t) :=
√

2 sin(ωnt) where ωn = nπ (1)

We say that f(t) is bandlimited if there is a maximum frequency component ωN in f(t). In other words,
if f(t) is bandlimited, then there is a N > 1 beyond which the Fourier coefficients fn vanish:

f(t) =

N∑
n=1

fnφn(t) (2)

The frequency ωN is called the bandlimit.
The term “superoscillations” refers to the phenomenon whereby a bandlimited signal can locally oscillate

(arbitrarily) faster than its bandlimit. To see how this arises, lets think of building functions using the Fourier
basis. Suppose we are given N basis functions, {φn(t)}Nn=1. Then, we can build bandlimited functions by
choosing the values of the coefficients fn. Suppose we want to construct a function such that f(ti) = yi for
i = 1, ..., N . Using equation (2), we must have

yi =

N∑
j=1

fjφj(ti). (3)

Notice, however, that this is just a matrix equation,

y = Φf , (4)

where the components of Φ are Φij = φj(ti). Hence, the requisite coefficients fj are given by f = Φ−1y.
We are (almost) totally free to pick the N ti’s and yi’s. In particular, there’s nothing stopping us from

picking the ti’s as close together as we want and choosing, for example, y1 = −1, y2 = +1, y3 = −1, y4 = +1,
etc. Therefore, a function that we construct in this way can be made to locally oscillate arbitrarily quickly.
It’s just linear algebra!

Of course, something has to give and there’s a price to pay. As discussed in class, a superoscillatory signal
will always have huge lobes whose size is exponentially larger than the amplitude of the superoscillations
(see the figure below). Since the power of a signal goes like its amplitude squared, we see that the power
required to generate superoscillations is exponential in their amplitude. (It turns out the power required is
also exponential in the length of the superoscillating region.)

1



Problem: Suppose f(t) is a superoscillatory signal, and consider taking a windowed Fourier transform
around the superoscillations, i.e., if the superoscillations begin at t1 and end at t2, take the Fourier transform
of B(t)f(t), where B(t) is the box function

B(t) =

{
1 t1 < t < t2
0 otherwise

(5)

(see the figure below). If the bandlimit of f(t) is ωN , one finds that the Fourier coefficients of B(t)f(t) do not
vanish for n > N . In other words, the superoscillations themselves are definitely high-frequency oscillations.

Why do we not see these high-frequency components in the Fourier transform of f(t)? In other words,
how is it that they vanish when we remove the window? Where do they “go?”

Hint 1: What happens if you take the complementary windowed transform, i.e., the Fourier transform of
B̄(t)f(t) where B̄(t) = 1 for 0 ≤ t ≤ t1 and t2 ≤ t ≤ 1 and vanishes everywhere else?

Hint 2: The Fourier transform is linear.

Bonus: Use the software package of your choice to generate an (intelligible) plot of a superoscillatory
signal. My suggestion is to follow this write-up and to build a function on the interval [0, 1] with Dirichlet
boundary conditions. N = 10 is a good cutoff to use. Also, don’t choose your points tj symmetrically about
the midpoint of the interval. A little bit of asymmetry will make your numerics more robust. This part is
a bonus, since the main challenge that you’ll be up against is machine precision, which is a computational
mathematics problem.

Super Bonus: Convert your superoscillatory signal into an audio signal. I think MATLAB has a package
that will let you do this. I really want to hear what superoscillations sound like.

2


