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Problem 1: Quantum gate warm-up

a) Translating the circuit to unitary operators:
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Similarly, [01) > [UF), [10) = |@_), [11) = |T_).

b) There are a couple of ways to do this. You can demonstrate equality by showing that the
circuits act on the computational basis equivalently. For example, for the first circuit:
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This is equal to CNOT where the second qubit is the control qubit. I kept the bits x and y
arbitrary, but you could also demonstrate equality by letting xz,y € {0,1} for each possible

value.
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You could also use matrix representations. For example, for the second circuit:

1000 10 0 0 1000
o100 01 0 0 0100
CNOT(Z®)CNOT = | o o o 00 -1 0 0001
0010/\00 0 ~-1/\0010
10 0 0
o1 0 o
oo -1 0
00 0 -1
=Z®1

The other circuits are similar.

Problem 2: Grover search

a) The best you can do is keep choosing entries in any order until you find the entry w. The
probability of finding w is greater than 1/2 if you check at least N/2 entries (and therefore
query f,, at least N/2 times).

¢) (w]s) = 1/V/N

d) Geometrically, first U, reflects |s) about |w™), and then U, reflects this vector about |s).
The end result is that |s) rotates by an angle 20 toward |w).

e) RF causes |s) to rotate by an angle 20k counterclockwise.

f) We want 20k + 6 = /2. Using 0 ~ sinf = 1/v/N, we thus want
1 T 1/m 7'('
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Y A T 5 (5 )~

I.e. we should choose k£ to be the closest integer to the answer above. Notice that k scales as
V' N, instead of N as we found in part a). Therefore, Grover Search gives us a modest speed-up
over the optimal classical algorithm.

Extra Problem: Distance measures

a) Let 0 = p—p and o|\;) = A\;|\;) be an orthonormal basis of eigenvectors of o. By definition,
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We therefore obtain d(p,p) < & Zf\;l [Ail.
b) Choosing E, = |\s)(\a| saturates the bound.
c)

lp = Al =Tr [(o10) 2]
= Trdiag(|A1], [ A2, .-, |AN]) in the {|\;)} basis

N
=Y Al
=1

So, d(p, p) = 3llp — pll1-

d)
o= < cos?(0/2) cos(6/2)sin(6/2) )
cos(0/2)sin(6/2) sin(0/2)
5— sin?(0/2)  cos(0/2)sin(0/2)
P= ( cos(6/2)sin(0/2) cos?(60/2) )

Therefore, d(p, p) = | cos?(0/2) — sin?(6/2)|.

e)

1) = [9)113 = (cos(8/2) — sin(8/2))* + (sin(6/2) — cos(6/2))?
= 2(cos(6/2) —sin(0/2))?

So, [[[4) = [¥)]l2 = V2| cos(8/2) — sin(6/2)].

d(p,p) = |cos(0/2) —sin(0/2)| - | cos(0/2) + sin(6/2)|
< |cos(A/2) —sin(0/2)| - V2
= [llv) — 1) Iz

f) E.g. plug in § = 37/2, then |¢)) = —[¢). In other words, the two states differ only by a phase,
so they are the same state, physically. One finds that d(|y), [¢)) = 0, but |||¢) — |[¥)]]2 = 2.
The 2-norm fails to distinguish such states.



