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Problem 1: Quantum gate warm-up

a) Translating the circuit to unitary operators:

CNOT (H ⊗ I)|00〉 = CNOT |+ 0〉

= CNOT
1√
2

(|0〉+ |1〉)|0〉

=
1√
2

(CNOT |00〉+ CNOT |10〉)

=
1√
2

(|00〉+ |11〉)

= |Φ+〉

Similarly, |01〉 7→ |Ψ+〉, |10〉 7→ |Φ−〉, |11〉 7→ |Ψ−〉.

b) There are a couple of ways to do this. You can demonstrate equality by showing that the
circuits act on the computational basis equivalently. For example, for the first circuit:

(H ⊗H)CNOT (H ⊗H)|x〉|y〉 = (H ⊗H)CNOT
1

2
(|0〉+ (−1)x|1〉)(|0〉+ (−1)y|1〉)

=
1

2
(H ⊗H)CNOT (|00〉+ (−1)x|10〉+ (−1)y|01〉+ (−1)x+y|11〉)

=
1

2
(H ⊗H)(|00〉+ (−1)x|11〉+ (−1)y|01〉+ (−1)x+y|10〉)

=
1

2
(|+ +〉+ (−1)x| − −〉+ (−1)y|+−〉+ (−1)x+y| −+〉)

=
1

2
(|+〉 (|+〉+ (−1)y|−〉) + |−〉 ((−1)x+y|+〉+ (−1)x|−〉))

=
1

2
(|+〉 (|+〉+ (−1)y|−〉) + (−1)x+y|−〉 (|+〉+ (−1)y|−〉))

=
1

2
(|+〉+ (−1)x+y|−〉)⊗ (|+〉+ (−1)y|−〉)

=
1

4

(
(1 + (−1)x+y)|0〉+ (1− (−1)x+y)|1〉

)
⊗ ((1 + (−1)y)|0〉+ (1− (−1)y)|1〉)

= |x⊕ y〉|y〉

This is equal to CNOT where the second qubit is the control qubit. I kept the bits x and y
arbitrary, but you could also demonstrate equality by letting x, y ∈ {0, 1} for each possible
value.
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You could also use matrix representations. For example, for the second circuit:

CNOT (Z ⊗ I)CNOT ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


≡ Z ⊗ I

The other circuits are similar.

Problem 2: Grover search

a) The best you can do is keep choosing entries in any order until you find the entry ω. The
probability of finding ω is greater than 1/2 if you check at least N/2 entries (and therefore
query fω at least N/2 times).

c) 〈ω|s〉 = 1/
√
N

d) Geometrically, first Uω reflects |s〉 about |ω⊥〉, and then Us reflects this vector about |s〉.
The end result is that |s〉 rotates by an angle 2θ toward |ω〉.

e) Rk causes |s〉 to rotate by an angle 2θk counterclockwise.

f) We want 2θk + θ = π/2. Using θ ≈ sin θ = 1/
√
N , we thus want

(2k + 1)
1√
N

=
π

2
⇒ k =

1

2

(π
2

√
N − 1

)
≈ π

4

√
N

I.e. we should choose k to be the closest integer to the answer above. Notice that k scales as√
N , instead of N as we found in part a). Therefore, Grover Search gives us a modest speed-up

over the optimal classical algorithm.

Extra Problem: Distance measures

a) Let σ = ρ− ρ̃ and σ|λi〉 = λi|λi〉 be an orthonormal basis of eigenvectors of σ. By definition,

d(ρ, ρ̃) =
1

2

N∑
a=1

|pa − p̃a| =
1

2

N∑
a=1

|Tr(σEa)|.

Now

|Tr(σEa)| =

∣∣∣∣∣
N∑
i=1

〈λi|σEa|λi〉

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

λi〈λi|Ea|λi〉

∣∣∣∣∣ ≤
N∑
i=1

|λi|〈λi|Ea|λi〉,

so
N∑
a=1

|Tr(σEa)| ≤
N∑
a=1

N∑
i=1

|λi|〈λi|Ea|λi〉 =

N∑
i=1

|λi|〈λi|

(
N∑
a=1

Ea

)
|λi〉 =

N∑
i=1

|λi|.
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We therefore obtain d(p, p̃) ≤ 1
2

∑N
i=1 |λi|.

b) Choosing Ea = |λa〉〈λa| saturates the bound.

c)

‖ρ− ρ̃‖1 = Tr
[
(σ†σ)1/2

]
= Tr diag(|λ1|, |λ2|, . . . , |λN |) in the {|λi〉} basis

=

N∑
i=1

|λi|

So, d(ρ, ρ̃) = 1
2‖ρ− ρ̃‖1.

d)

ρ =

(
cos2(θ/2) cos(θ/2) sin(θ/2)

cos(θ/2) sin(θ/2) sin2(θ/2)

)
ρ̃ =

(
sin2(θ/2) cos(θ/2) sin(θ/2)

cos(θ/2) sin(θ/2) cos2(θ/2)

)
Therefore, d(ρ, ρ̃) = | cos2(θ/2)− sin2(θ/2)|.

e)

‖|ψ〉 − |ψ̃〉‖22 = (cos(θ/2)− sin(θ/2))2 + (sin(θ/2)− cos(θ/2))2

= 2(cos(θ/2)− sin(θ/2))2

So, ‖|ψ〉 − |ψ̃〉‖2 =
√

2| cos(θ/2)− sin(θ/2)|.

d(ρ, ρ̃) = | cos(θ/2)− sin(θ/2)| · | cos(θ/2) + sin(θ/2)|
≤ | cos(θ/2)− sin(θ/2)| ·

√
2

= ‖|ψ〉 − |ψ̃〉‖2

f) E.g. plug in θ = 3π/2, then |ψ〉 = −|ψ̃〉. In other words, the two states differ only by a phase,
so they are the same state, physically. One finds that d(|ψ〉, |ψ̃〉) = 0, but ‖|ψ〉 − |ψ̃〉‖2 = 2.
The 2-norm fails to distinguish such states.
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