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Problem 1: The Schmidt decomposition

Let HAB be a separable Hilbert space, i.e. it admits a countable basis of orthonormal eigenvec-
tors. Furthermore, suppose that HAB factorizes into the tensor product HAB = HA⊗HB, and
let |ψ〉AB ∈ HAB. We can always write

|ψ〉AB =
∑
i

∑
µ

aiµ|i〉A|µ〉B (1)

where {|i〉A} and {|µ〉B} are orthonormal bases for HA and HB, respectively. For each i, let us
define the vector |̃i〉B =

∑
µ aiµ|µ〉B, so that

|ψ〉AB =
∑
i

|i〉A |̃i〉B. (2)

Note that the |̃i〉B need not be normalized nor orthogonal.

a) Suppose that {|i〉A} is the basis in which ρA = TrB |ψ〉AB〈ψ|AB is diagonal, and let the set
S label the non-zero eigenvalues of ρA, i.e. pi 6= 0⇔ i ∈ S. In other words,

ρA =
∑
i∈S

pi|i〉A〈i|A. (3)

Starting from Eq. (2), compute ρA by taking the partial trace over B and show that

ρA =
∑
i

∑
i′

〈̃i′ |̃i〉B|i〉A〈i′|A. (4)

b) Compare Eqs. (3) and (4). What do you conclude about the overlap 〈̃i′ |̃i〉? Use this to write
down a set of orthonormal vectors in B.

c) Write down |ψ〉AB using the basis {|i〉}A and the orthonormal set of vectors in B that you
found above. What are the eigenvalues of ρB?

Note: This important result is known as the Schmidt decomposition. Any bipartite pure
state |ψ〉AB can be written in the form

|ψ〉AB =
∑
j

√
pj |φj〉A|χj〉B, (5)

where the vectors |φj〉A and |χj〉B are orthonormal in A and B, separately. Note that this
decomposition is state-dependent. In general, if |ω〉AB is some other state, then it will not have
such a decomposition in terms of the same vectors.
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Problem 2: Basic properties of entanglement entropy

Von Neumann entropy is an incredibly important concept in quantum information science, and
any overview of the field would be incomplete without at least touching on it. In this set of
problems, we’ll learn about what it is, about some of its properties, and how it’s useful.

Definition 1 Let H be a separable Hilbert space and let ρ ∈ L(H) be a density matrix, i.e. ρ
is Hermitian, positive semidefinite, and satisfies Tr ρ = 1. The Von Neumann entropy of ρ is

S(ρ) = −Tr ρ log ρ. (6)

If {|pi〉} is an orthonormal basis of eigenstates of ρ, so that ρ|pi〉 = pi|pi〉, and hence ρ =∑
i pi|pi〉〈pi| (where some of the pi may be zero), then

S(ρ) = −
∑
i

pi log pi. (7)

In particular, if H is bipartite, i.e. H = HA⊗HB, so that we can define the reduced density
matrices ρA = TrB ρ and ρB = TrA ρ, then S(ρA) and S(ρB) are the entanglement entropies of
ρA and ρB, respectively.

The reason for this terminology is that entanglement entropy is generally a measure of
entanglement. It turns out that for a bipartite Hilbert space, if the total state ρ is pure, then
entanglement entropy is essentially the unique quantitative measure of how much A and B are
entangled. Let’s investigate this claim a bit in this problem.

To simplify the problem, let H be a finite-dimensional Hilbert space with dimH = N .

a) What is the maximum value of S(ρ)? Which density matrix ρ achieves this value?

b) Show that S(ρ) = 0 if and only if ρ is a pure state, i.e. ρ = |ψ〉〈ψ| for some vector |ψ〉.

c) Now suppose that H = HA ⊗ HB. If ρ is a pure state, show that S(ρA) = S(ρB), where
ρA = TrB ρ and ρB = TrA ρ. (Hint: use the result of Problem 1.)

d) Using the results of parts (b) and (c), show that if ρ is a pure state, then A and B are
unentangled if and only if S(ρA) = S(ρB) = 0.

e) Show that S(UρU †) = S(ρ) for any unitary operator U . This shows that Von Neumann
entropy is invariant under local operations.
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Problem 3: Positivity of relative entropy and subadditivity

a) Show that log x ≤ x− 1 for all positive real numbers, with equality if and only if x = 1.

b) The classical relative entropy of a probability distribution {p(x)} relative to {q(x)} is defined
as

H(p ‖ q) =
∑
x

p(x) (log p(x)− log q(x)) . (8)

Show that
H(p ‖ q) ≥ 0, (9)

with equality if and only if the distributions are identical. (Hint: apply the inequality from (a)
to log(q(x)/p(x)).)

c) The quantum relative entropy of the density operator ρ with respect to σ is

S(ρ ‖σ) = Tr [ρ(log ρ− log σ)] . (10)

Let {pi} denote the eigenvalues of ρ and {qa} denote the eigenvalues of σ. Show that

S(ρ ‖σ) =
∑
i

pi

(
log pi −

∑
a

Dia log qa

)
, (11)

where Dia is a doubly stochastic matrix. Express Dia in terms of the eigenstates of ρ and σ.
(A matrix is doubly stochastic if its entries are nonnegative real numbers, where each row and
each column sums to one.)

d) Show that if Dia is doubly stochastic, then (for each i)

log

(∑
a

Diaqa

)
≥
∑
a

Dia log qa, (12)

with equality only if Dia = 1 for some a.

e) Show that
S(ρ ‖σ) ≥ H(p ‖r), (13)

where ri =
∑

aDiaqa.

f) Show that S(ρ ‖σ) ≥ 0, with equality if and only if ρ = σ.

g) Use nonnegativity of quantum relative entropy to prove the subadditivity of Von Neumann
entropy,

S(ρAB) ≤ S(ρA) + S(ρB), (14)

with equality if and only if ρAB = ρA ⊗ ρB. (Hint: Consider the relative entropy of ρAB and
ρA ⊗ ρB.)
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