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Problem 1: Quantum gate warm-up

a) Recall that the computational basis is the basis {|00〉, |01〉, |10〉, |11〉} and the Bell basis is
the basis consisting of the maximally entangled states

|Φ±〉 =
1√
2

(|00〉 ± |11〉)

|Ψ±〉 =
1√
2

(|01〉 ± |10〉) .

Show that the following circuit maps the computational basis onto the Bell basis:

Recall that the matrix representation of the Hadamard gate, H, in the computational basis is
given by

H =
1√
2

(
1 1
1 −1

)
.

b) Demonstrate the following equalities:
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(The very last gate denotes the SWAP gate, i.e. SWAP|x〉|y〉 = |y〉|x〉.)

Problem 2: Grover Search

Some quantum algorithms, like the quantum factoring algorithm and the quantum solution
to Simon’s problem, are so dramatic because they constitute an exponential speed-up over the
best known classical algorithm. Grover Search, on the other hand, does not offer an exponential
speed-up, but it is striking in its extremely broad generality.

Grover Search is an algorithm that implements an unstructured database search: Given a
database that contains N entries (with no duplicates), find a particular marked entry, ω. In
other words, we assume that we are given an oracle that computes a function, fω, such that

fω(x) =

{
0 x 6= ω
1 x = ω

. (1)

Moreover, assume that querying fω incurs no computational cost (it’s “easy” to evaluate fω).
Not knowing which entry is the marked entry ω, our task is to determine this by querying fω.

For example, think back to the days when telephone books were still relevant. It is easy
to look up someone’s phone number if you know their name, because the database of (name,
number) pairs is sorted in alphabetical order—it’s a structured database. However, it’s a tricky
task to find the name corresponding to a certain number. In this example, the marked entry
is a particular name ω, and you “implement” the function fω by taking a name, looking up
the corresponding phone number (an easy task given the phone book), and comparing it to the
given phone number.

a) Classically, what is an optimal strategy for finding ω in an unstructured database with N
unique entries by querying fω? What is the smallest number of times you must query fω before
the probability of having found ω exceeds 1/2?

b) For convenience, suppose that the database entries are n-bit strings and that there are
N = 2n entries (i.e. each unique n-bit string appears in the database exactly once). Now
suppose we are given a quantum oracle; that is, a unitary Ufω that acts on n+ 1 qubits as

Ufω |x〉|y〉 = |x〉|y ⊕ fω(x)〉. (2)

(x ≡ x1x2 · · ·xn denotes a n-bit string and y is a single bit.) Recall from the lectures that
Ufω |x〉|−〉 = (−1)fω(x)|x〉|−〉. Therefore, if we always prepare the last qubit in the state |−〉
and then discard it, we are really just implementing the unitary operation

Uω : |x〉 7→ (−1)fω(x)|x〉. (3)

We can therefore compactly write
Uω = I − 2|ω〉〈ω|. (4)

Convince yourself that this is true.
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c) Let

|s〉 =
1√
N

N−1∑
x=0

|x〉. (5)

What is the value of 〈ω|s〉?

d) Define the unitary operator Us = 2|s〉〈s| − I, as well as an operator R = UsUω called the
Grover iteration. What is the action of R on |s〉 in the plane spanned by |ω〉 and |s〉? (Hint: It
is helpful to denote 〈ω|s〉 ≡ sin θ.)

|ω〉

|ω⊥〉

|s〉

θ

e) What is the action of Rk on |s〉 (k ∈ Z, k > 0)?

f) After applying R to |s〉 k times, we measure the resulting state. What value should we
choose for k so that, with high probability, the outcome of the measurement is |ω〉? How does
this scale with N? Compare your answer here to the answer from part a). (Hint: For N large,
sin θ ≈ θ.)

Extra Problem: Distance measures

Adapted from Exercise 2.7 of J. Preskill, Lecture Notes for Ph219/CS219: Quantum Information
and Computation, Chapter 2 (2013 edition).

In many cases, we would like to be able to meaningfully quantify how “close” two quantum
states are to each other. For example, if we are trying to correct errors made during a quantum
computation, we would like to quantify how close the post-recovery state is to the original state.
In this problem, we will see why the 1-norm is a good measure of closeness.

Consider two quantum states described by density operators ρ and ρ̃ in a N -dimensional
Hilbert space, and consider the complete orthogonal measurement {Ea : a = 1, 2, . . . , N}, where
the Ea’s are one-dimensional projectors satisfying

N∑
a=1

Ea = I. (6)

When the measurement is performed, outcome a occurs with probability pa = Tr ρEa if the
state is ρ and with probability p̃a = Tr ρ̃Ea if the state is ρ̃.

The (normalized) L1 distance between the two probability distributions is defined as

d(p, p̃) ≡ ‖p− p̃‖1 ≡
1

2

N∑
a=1

|pa − p̃a|. (7)
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This distance is zero if the two distributions are identical, and attains its maximum value of
one if the two distributions have support on disjoint sets.

a) Show that

d(p, p̃) ≤ 1

2

N∑
i=1

|λi|, (8)

where the λi’s are the eigenvalues of the Hermitian operator ρ− ρ̃. Hint: Working in the basis
in which ρ − ρ̃ is diagonal, find an expression for |pa − p̃a|, and then find an upper bound on
|pa − p̃a|. Finally, use the completeness property Eq. (6) to bound d(p, p̃).

b) Find a choice for the orthogonal projectors {Ea} that saturates the upper bound Eq. (8).

Define a distance d(ρ, ρ̃) between density operators as the maximal L1 distance between the
corresponding probability distributions that can be achieved by any orthogonal measurement.
From the results of (a) and (b), we have found that

d(ρ, ρ̃) =
1

2

N∑
i=1

|λi|. (9)

c) The trace norm, or Schatten 1-norm ‖A‖1 of an operator A is defined as

‖A‖1 ≡ Tr
[
(A†A)1/2

]
. (10)

How can the distance d(ρ, ρ̃) be expressed as the 1-norm of an operator?

Now suppose that the states ρ and ρ̃ are pure states ρ = |ψ〉〈ψ| and ρ̃ = |ψ̃〉〈ψ̃|. If we adopt
a suitable basis in the space spanned by the two vectors, and appropriate phase conventions,
then these vectors can be expressed as

|ψ〉 =

(
cos θ/2
sin θ/2

)
|ψ̃〉 =

(
sin θ/2
cos θ/2

)
. (11)

d) Express the distance d(ρ, ρ̃) in terms of the angle θ.

e) Express ‖|ψ〉 − |ψ̃〉‖2 (where ‖ · ‖ denotes the Hilbert space norm, i.e., the 2-norm ‖|ψ〉‖ =√
〈ψ|ψ〉) in terms of θ, and by comparing with the results of (d), derive the bound

d(|ψ〉〈ψ|, |ψ̃〉〈ψ̃|) ≤ ‖|ψ〉 − |ψ̃〉‖. (12)

f) Why is ‖|ψ〉 − |ψ̃〉‖ not a good measure of the distinguishability of the pure quantum states
ρ and ρ̃? Hint: Remember that quantum states are rays.
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