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Problem 1: Fun with entanglement

One feature that distinguishes quantum computation from classical computation is that a quan-
tum computer has access to fundamentally different computational resources. One such resource
is entanglement, and in this exercise, we will see how entanglement can be used to do fun things
like teleportation.

Suppose that Alice holds a qubit, which we label M , in some unknown, but pure state |ψ〉M .
In other words,

|ψ〉M = α|0〉M + β|1〉M , (1)

but α and β are unknown to Alice. Her goal is to transmit this state to Bob without ever
sending a qubit to Bob and without disturbing the unknown state.

a) Suppose that Alice and Bob each hold half of a maximally entangled pair of qubits in the
state

|Φ+〉AB =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) . (2)

In other words, Alice holds the qubit A, Bob holds the qubit B, and together, they are in the
(entangled) state above. Write the total state of the MAB system in the computational basis
(i.e. the basis |0〉M |0〉A|0〉B, |0〉M |0〉A|1〉B, . . . ).

b) Alice now measures her pair of qubits (MA) in the Bell basis

|Φ±〉 =
1√
2

(|0〉|0〉 ± |1〉|1〉)

|Ψ±〉 =
1√
2

(|0〉|1〉 ± |1〉|0〉) .
(3)

For each of her 4 possible outcomes, what is the state of Bob’s qubit?

c) After measuring, Alice is now allowed to send a classical message to Bob. What should she
tell Bob to do so that he obtains the original state on his qubit, |ψ〉B?

Note – Notice that entanglement let us do something special. Alice never physically sent her
quantum message to Bob. Instead, by consuming a shared entangled pair, and by sending a
classical messaging consisting of a couple of bits, Alice succeeded in nonlocally transmitting her
quantum message to Bob. Note that we never violated causality. Can you figure out why?
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Problem 2: Quantum gate warm-up

a) Show that the following circuit maps the computational basis to the Bell basis:

b) Demonstrate the following equalities:

(The very last gate denotes the SWAP gate, i.e. SWAP|x〉|y〉 = |y〉|x〉.)

Problem 3: Distance measures

In many cases, we would like to be able to meaningfully quantify how “close” two quantum
states are to each other. For example, a universal gate set has to be able to produce a state
that is arbitrarily “close” to any desired output. In this problem, we will see why the 1-norm
is a good measure of closeness. For fun, let’s do the analysis using density matrices, since we
won’t talk too much about them in these two lectures and some practice will be useful.

Consider two quantum states described by density operators ρ and ρ̃ in an N -dimensional
Hilbert space, and consider the complete orthogonal measurement {Ea, a = 1, 2, 3, . . . , N},
where the Ea’s are one-dimensional projectors satisfying

N∑
a=1

Ea = I (4)
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When the measurement is performed, outcome a occurs with probability pa = Tr ρEa if the
state is ρ and with probability p̃a = Tr ρ̃Ea if the state is ρ̃.

The L1 distance between the two probability distributions is defined as

d(p, p̃) ≡ ‖p− p̃‖1 ≡
1

2

N∑
a=1

|pa − p̃a|. (5)

This distance is zero if the two distributions are identical, and attains its maximum value of
one if the two distributions have support on disjoint sets.

a) Show that

d(p, p̃) ≤ 1

2

N∑
i=1

|λi|, (6)

where the λi’s are the eigenvalues of the Hermitian operator ρ− ρ̃. Hint: Working in the basis
in which ρ − ρ̃ is diagonal, find an expression for |pa − p̃a|, and then find an upper bound on
|pa − p̃a|. Finally, use the completeness property Eq. (4) to bound d(p, p̃).

b) Find a choice for the orthogonal projector {Ea} that saturates the upper bound Eq. (6).

Define a distance d(ρ, ρ̃) between density operators as the maximal L1 distance between the
corresponding probability distributions that can be achieved by any orthogonal measurement.
From the results of (a) and (b), we have found that

d(ρ, ρ̃) =
1

2

N∑
i=1

|λi|. (7)

c) The L1 norm ‖A‖1 of an operator A is defined as

‖A‖1 ≡ Tr
[
(AA†)1/2

]
. (8)

How can the distance d(ρ, ρ̃) be expressed as the L1 norm of an operator?

Now suppose that the states ρ and ρ̃ are pure states ρ = |ψ〉〈ψ| and ρ̃ = |ψ̃〉〈ψ̃|. If we adopt
a suitable basis in the space spanned by the two vectors, and appropriate phase conventions,
then these vectors can be expressed as

|ψ〉 =

(
cos θ/2
sin θ/2

)
|ψ̃〉 =

(
sin θ/2
cos θ/2

)
. (9)

d) Express the distance d(ρ, ρ̃) in terms of the angle θ.

e) Express ‖|ψ〉 − |ψ̃〉‖2 (where ‖ · ‖ denotes the Hilbert space norm, i.e., the 2-norm) in terms
of θ, and by comparing with the results of (d), derive the bound

d(|ψ〉〈ψ|, |ψ̃〉〈ψ̃|) ≤ ‖|ψ〉 − |ψ̃〉‖. (10)

f) Bob thinks that the norm ‖|ψ〉 − |ψ̃〉‖ should be a good measure of the distinguishability of
the pure quantum states ρ and ρ̃. Explain why Bob is wrong. Hint: Remember that quantum
states are rays.
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Problem 4: A universal gate set

If you still have time and are itching for more...

Try out problems 5.3 and 5.4 in this set of notes: http://www.theory.caltech.edu/

~preskill/ph219/chap5_15.pdf. These two exercises will step you through a derivation that
the Hadamard gate, H, together with a controlled phase gate, Λ(P ) ≡ diag(1, 1, 1, i), is a
universal gate set.
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