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Abstract

This set of notes constitutes roughly two-and-a-bit introductory lectures on quantum
information and quantum computation. I have mostly drawn on John Preskill’s lecture
notes [1], as well as my own experiences studying quantum information as a student. The
first lecture consists of a short overview of quantum information science and an introduction
to quantum algorithms. The second lecture covers classical and quantum computational
complexity classes, culminating with a discussion of Simon’s problem and a proof that
BPP θ 6= BQP θ.

1 Overview of quantum information science

Quantum information science, or QIS for short, is the intersection of three disciplines: quantum
mechanics, information theory, and computer science. As with so many disciplines which bear
the prefix “quantum,” QIS has its roots in a classical theory. Classical information science
concerns itself with the information stored in, and the manipulation of bit strings. In other
words, the fundamental entity is the bit,

one bit: x ∈ {0, 1}, (1)

from which strings are formed and used to encode information,

n bits: 0110100 · · · 0. (2)

Computation is essentially the processing of bit strings as a means to process the information
that they encode.

Analogously, QIS is concerned with the information stored in, and the manipulation of
quantum states. While in principle we can compute with states in any Hilbert space (in the
same way that we are free to use any object which encodes classical information to compute),
as a matter of convenience, we take the qubit as our basic entity,

one qubit: |ψ〉 ∈ Hqubit
∼= C2

|ψ〉 ∈ span{|0〉, |1〉},
(3)

from which strings of qubits are formed,

n qubits: |ψ〉 ∈ H = (Hqubit)
⊗n ∼= C2n

|ψ〉 ∈ span{|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 | xi ∈ {0, 1}, i = 1, 2, . . . , n}.
(4)
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Written out in the computational basis, the most general pure state of n qubits is therefore

|ψ〉 =
∑
x1=0,1

∑
x2=0,1

· · ·
∑

xn=0,1

cx1x2···xn |x1x2 · · ·xn〉. (5)

Note that I will often omit the tensor product symbol and also concatenate strings of bits within
a single ket, as written above. I will also often abbreviate a n-bit string by just the symbol x,
i.e.

x ≡ x1x2 · · ·xn, (6)

and hence also write n-qubit states as

|ψ〉 =
2n−1∑
x=0

cx|x〉. (7)

(If you want, you can think of x ≡ x1x2 · · ·xn as literally the decimal representation of the
number with binary digits x1x2 · · ·xn.) QIS is thus the study of the computational capabilities
afforded to us by quantum systems.

Quantum information is quite different from classical information. If we are capable of
accurately manipulating a quantum system, we can leverage these differences to do interesting
things that a classical information processing system cannot do efficiently. The goal of these
two short lectures is to illustrate this claim.

1.1 A bit of historical background

People started to get interested in quantum computing in the 1990’s for a variety of reasons.
Some of these reasons include:

• People realized that we were eventually going to reach the limit of classical architectures
(i.e., due to Moore’s law).

• It was becoming apparent that simulating quantum systems is extraordinarily difficult.

• People were ever searching for better cryptographic systems (and quantum computing
changed the game drastically).

All of these motivations spurred the development of quantum computers; however, the singular
finding which is perhaps the most responsible for thrusting QIS into the mainstream was Peter
Shor’s discovery in 1994 of a quantum algorithm for factoring a number that is a product of two
primes (republished in 1997 [2]). That is, given a number N , which you are promised satisfies

N = p · q, p, q prime, (8)

the problem is to find the prime factors p and q. While it is not proven that this is a hard
problem, it certainly seems to be a hard problem—so much that it constitutes the foundation
of the RSA crypto-system. We will be more careful about the meaning of the word “hard”
later, but for now, let’s take hardness to mean “the amount of time a computer takes to solve
the problem.” For N which has on the order of 190 digits, a typical supercomputer circa 2014
could find p and q on the order of 30 years. For 500 digits, this time increases to 1012 years.

Shor’s algorithm, however, has much better scaling. If the 190-digit problem runs in 1
second, then the 500-digit problem would run on the order of a few 10’s of seconds.1 So,

1This is what I have written in my old notes (without any references) from when I was taking a quantum
computing class back in 2014, so don’t take these numbers too literally. We will take a similar question up again
in the second problem set and be a bit more careful about where we get information in the literature.
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not only do you solve the problem faster with a quantum computer, you solve the problem
exponentially faster... and you break RSA encryption along the way. This was enough evidence
to convince people that quantum computers might be capable of some pretty interesting things.

1.2 Quantum information

Let us begin our investigations with the following question: how is quantum information different
from classical information? Well...

• Randomness — While we can engineer pseudo-randomness in classical computers to sim-
ulate randomized computation, quantum systems are inherently and inexorably random.

• Uncertainty — Many quantum observables fail to commute. This ultimately results in a
trade-off between information retrieval and disturbance of stored information.

• No cloning — Classical information can be copied to the extent that the laws of ther-
modynamics allow (so, freely in practice). The operation |ψ〉|0〉 → |ψ〉|ψ〉, however, if
generally impossible.

• Entanglement — Quantum systems can store information nonlocally. An analogy is as
follows: if classical, local information is the content of the pages in a book, nonlocal
information would be information stored in correlations among the pages. In particular,
you need all of the pages in order to access the nonlocal information. What’s more, this
quantum book’s pages disappear after you read them, so if you read a single page, you
generally end up ruining the nonlocal information!

• Parallelism — A common platitude is that “quantum computers are so powerful because
they have exponentially many states.” While this is true—the dimension of the Hilbert
space of n qubits is 2n—it is also true that one can form 2n different strings out of n bits.
Rather, what makes quantum computers special is that their computational states can be
superpositions. This makes possible a phenomenon known as quantum parallelism, which
will feature prominently in these two lectures.

1.3 Quantum computation

The essential elements of a quantum computation are

1. A state space — e.g., n qubits

2. Initialization — the starting state, usually |00 · · · 0〉

3. Computation — a unitary transformation to |ψ〉 = U |00 · · · 0〉

4. Readout — measure; the n-bit string x occurs with probability Pr(x) = |〈x|ψ〉|2

Hopefully, you get the correct answer, x, to an interesting question with high probability!

State space - implementations

It’s fine and all to talk about abstract qubits, but how does one actually implement a qubit in
a laboratory? Implementations and building quantum computers is a whole field of QIS, and
while we won’t spend much time discussing the subject, I’ll just give a couple of examples here.

One technology is trapped ion quantum computers. Here, a collection of n charged particles
are electromagnetically confined and are used to implement qubits by identifying |0〉 with the
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ground state, |g〉, and |1〉 with some long-lived excited state, |e〉. The qubits are thus electro-
magnetic atomic systems. The state of the trapped ions can be manipulated by laser pulses. For
example, readout can be achieved by shining a laser that is resonant with a transition between
|g〉 and some other excited state besides |e〉. If the atom fluoresces, then it was in the state |g〉;
otherwise, it was in the state |e〉.

b b b b b b b |e〉

|g〉

Figure 1: Trapped ions as qubits. Checking for fluorescence by driving a transition from g to a
state besides e is a way to read out the state.

Trapped ions are good test beds for quantum computing because they offer good control
over the qubits and are a relatively clean system. However, they are unsuitable for large-scale
computing because they are short-lived and difficult to scale up in number. Other examples of
quantum architectures include:

• cavity QED systems

• superconducting flux qubits (e.g. Google’s machine)

• NMR (nuclear magnetic resonance) systems

Chapter 7 of Nielsen and Chuang is a good starting point if you want to learn more about
physical implementations of quantum computers, although it’s by no means complete and
rapidly falls out of date [3]. Probably your best bet to get caught up on the latest tech-
nologies is to look for recent review talks or conference proceedings online, follow the references
therein, or simply go talk to the people who work in the nanotechnology lab nearest you.

Computation

Universal gate sets

So, assuming that you have a collection of qubits, which you can initialize into a starting state
|00 · · · 0〉, the next thing you want to do is manipulate them to carry out some interesting
operation. In other words, you want to be able to apply some unitary, U , to the qubits, to bring
them into some final state U |00 · · · 0〉.

Now is as good a time as any to introduce circuit notation. This is just a pictorial way to
represent operations on a collection of qubits. For example, the operation U |00 · · · 0〉 is denoted
by the following diagram:

U
b

b

b

|0〉
|0〉

|0〉

Figure 2: A quantum circuit, read left to right.

4



Each line represents one qubit, and a square represents a unitary operator which acts on the
qubits whose lines feed into the square. Altogether, such a diagram is called a circuit.

Of course, it’s not practical to expect a quantum computer to be able to carry out arbitrary
unitaries by acting on all qubits at once, in the same way that a classical computer is not built
to be able to carry out every n-bit function in its hardware in a single shot. Instead, functions
of n bits are built up out of simpler logical operations, like AND, OR, NOT, XOR, and so
on. Similarly, we build up complicated and interesting unitaries through circuits consisting
of simpler unitary operations acting on smaller numbers of qubits, which we often call gates.
For example, some simple gates are the Pauli X gate, the Pauli Z gate, or the controlled not
(CNOT) gate.

X|x〉 |x⊕ 1〉

Figure 3: Pauli X operator.

Z|x〉 (−1)x|x〉

Figure 4: Pauli Z operator

b|x〉

|y〉

|x〉

|x⊕ y〉

Figure 5: Controlled not, or CNOT operator.

Here, the symbol ⊕ denotes bitwise addition, or addition modulo 2. Explicitly,

0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1.

If a collection of gates is sufficient to implement any possible unitary operation, then we say
that it is a universal gate set. Stated a bit more carefully, its definition is the following:

Definition 1.1 Let H be a finite-dimensional Hilbert space with dimH = n. A collection of
unitary operators {U1, U2, . . . , Um} is a universal gate set if, for every unitary operator U acting
on H and for every ε > 0, there exists a finite sequence Ui1 , Ui2 , . . . , Uik such that

‖Uik · · ·Ui2Ui1 |0〉 − U |0〉‖1 < ε (9)

It turns out that almost any single-qubit gate, together with a single 2-qubit entangling
gate, is a universal gate set if you are able to apply these gates to any single qubit or pair
of qubits. This fact is quite difficult to prove, but if you check out Problems 5.3 and 5.4 of
Preskill’s notes [1], you will be pointed toward a pretty tractable proof that a single-qubit gate
called the Hadamard gate, together with a 2-qubit gate called a controlled phase gate, together
constitute a universal gate set.

Error Correction

So, supposing you have some physical system which implements a collection of qubits, which
you can prepare in a simple initial state, and you possess the capability to manipulate your
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qubits and read out their state. One final obstruction to performing quantum computations is
the fact that the real world is not mathematically perfect nor ideal. Every operation that you
perform will introduce some amount of error into your computation. Furthermore, qubits are
physical systems which interact with their surrounding environment. These uncontrolled and
unmonitored interactions lead to decoherence of your qubits, which, if your goal is to carry out
some coherent manipulation of a pure quantum state, is a huge obstruction to computation.

system

environment

ancillas

cool

discard

Figure 6: Quantum error correction, in a schematic nutshell. In thermodynamic terms, you
can think of the use of additional degrees of freedom that we later discard, called ancillas, as a
cooling process to counteract disorder caused by environmental interactions, which “heat up”
our system, in a sense. These ancillary degrees of freedom are used to encode a logical system
in a larger physical space and to monitor the system for errors in a non-invasive way.

All of these considerations thus necessitate quantum error correction. Schematically, this
is done by encoding some fixed, logical state in a much larger Hilbert space, in a way that
protects it from environmental interactions and that allows us to detect and correct any errors.
The task is surprisingly subtle, however, because you cannot just measure the intermediate
state of a computation to see if any error occurred. Recall the interplay between information
and disturbance—such checks will generally ruin your computation! As such, quantum error
correction consists of keeping track of errors and correcting them, all the while protecting the
encoded information from the environment... and from ourselves! We won’t go into any more
details about error correction here, but there are several great introductory resources that you
can consult if you want to delve into quantum error correction, such as Preskill’s notes [1] or
Gottesman’s notes [4] to name a couple.

1.4 Quantum parallelism as a resource: Deutsch’s problem

We have spent a lot of time talking about quantum computing, how it differs from classical
computing, and some challenges (both practical and conceptual) surrounding quantum compu-
tations, and so let’s get our hands dirty and study a simple quantum algorithm, which solves
Deutsch’s problem.

The problem is the following. Suppose that f : {0, 1} → {0, 1} is some function that is
unknown to us, but we are allowed to query it. In other words, we possess some black box
which can tell us the values of f(0) and f(1). The question we must answer is the following: Is
f constant (f(0) = f(1)) or balanced (f(0) 6= f(1))?

Classically, we can of course answer the question with two queries of the black box. We just
ask for the values f(0) and f(1), and then we compare them. On the other hand, we cannot
do any better than that. We need at least two queries of the black box; otherwise, we can only
make a guess, with a 50% chance of being correct.

Quantum-ly, however, we can solve the problem with a single query. In this case, suppose
that we have two qubits and a unitary black box acting on our qubits that we can query. The
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black box cannot just be a map Ũf : |x〉 7→ |f(x)〉, however. For example, if f is balanced,
this map has no inverse, so it cannot be unitary. Instead, suppose our black box is a unitary
operation Uf which implements

Uf : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉. (10)

(In the expression above, x and y can take the values 0 or 1.) My claim is that the following
circuit lets you solve the problem with a single query of Uf :

H H

UfHX

b measure|0〉

|0〉

1 2 3 4

Figure 7: A quantum circuit for solving Deutsch’s problem.

Note that H denotes the Hadamard gate, which acts on a single qubit in the computational
basis (i.e. the basis spanned by |0〉 ≡

(
1
0

)
and |1〉 ≡

(
0
1

)
) as

H ≡ 1√
2

(
1 1
1 −1

)
. (11)

Or, in other words,

H|0〉 =
1√
2

(|0〉+ |1〉) ≡ |+〉 (12)

H|1〉 =
1√
2

(|0〉 − |1〉) ≡ |−〉. (13)

X is of course the Pauli X operator, X|0〉 = |1〉, X|1〉 = |0〉.
So, what does the circuit do? Let’s step through it:

|0〉|0〉 1−→ |0〉|1〉 (14)

2−→ |+〉|−〉 =
1√
2

(|0〉+ |1〉)⊗ |−〉 (15)

But now, notice that the action of Uf on a state |x〉|−〉 is the following:

Uf |x〉|−〉 =
1√
2

(Uf |x〉|0〉 − Uf |x〉|1〉) (16)

=
1√
2

(|x〉|f(x)〉 − |x〉|f(x)⊕ 1〉) (17)

=

{
1√
2
|x〉 (|0〉 − |1〉) if f(x) = 0

1√
2
|x〉 (|1〉 − |0〉) if f(x) = 1

(18)

= (−1)f(x)|x〉|−〉 (19)
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Therefore, the next step of the algorithm is

|+〉|−〉 3−→ 1√
2

(
(−1)f(0)|0〉+ (−1)f(1)|1〉

)
|−〉 (20)

4−→ 1√
2

(
(−1)f(0)

1√
2

[|0〉+ |1〉] + (−1)f(1)
1√
2

[|0〉 − |1〉]
)
|−〉 (21)

=
1

2

([
(−1)f(0) + (−1)f(1)

]
|0〉+

[
(−1)f(0) − (−1)f(1)

]
|1〉
)
|−〉 (22)

So, when we measure the first qubit, we find |0〉 with probability 1 if f(0) = f(1), but we find
|1〉 with probability 1 if f(0) 6= f(1). With a single query of Uf and a single measurement, we
can therefore determine whether f is constant or balanced. Pretty neat!

1.5 Entanglement as a resource: teleportation

The quantum solution to Deutsch’s problem exploited parallelism; we gained an edge over the
classical strategy by querying the black box with a superposition of computational basis states.
To end this first lecture, let’s see how entanglement can be harnessed to achieve the teleportation
of a quantum state [5]. While it’s more of a communication task than a computational task,
teleportation is an important non-classical operation that is a basic ingredient for many other
quantum protocols.

The set-up is as follows. Suppose that Alice has a qubit M (a quantum message) in some
unknown state |ψ〉M that she wants to send to Bob. In other words, M is in some definite state
|ψ〉M = α|0〉M + β|1〉M , but α and β are unknown to Alice. If Alice had many copies of the
state, she could measure some of them to learn the values of α and β and then send an e-mail
to Bob with this information. However, suppose that she possesses only a single copy of the
state, and furthermore that she cannot physically send the qubit to Bob.

So far, the task seems hopeless. However, suppose that Alice and Bob met beforehand and
each took one qubit from an entangled pair in the state

|Φ+〉AB =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) , (23)

i.e. Alice holds the qubit A, Bob holds the qubit B, and together they are in the joint state on
AB above.

Consider the total state on the MAB system:

|ψ〉M |Φ+〉AB ∝ (α|0〉M + β|1〉M ) (|00〉AB + |11〉AB) (24)

= α|000〉MAB + α|011〉AB + β|100〉MAB + β|111〉MAB (25)

(Note that I’m writing ∝ to avoid keeping track of factors of 1/
√

2 here.) Suppose that Alice
begins by measuring her pair of qubits MA in the Bell basis,

|Φ±〉 =
1√
2

(|00〉 ± |11〉)

|Ψ±〉 =
1√
2

(|01〉 ± |10〉) .
(26)

As such, if we re-write Eq. (25) in this basis,

|ψ〉M |Φ+〉AB ∝ α
(
|Φ+〉MA + |Φ−〉MA

)
|0〉B + α

(
|Ψ+〉MA + |Ψ−〉MA

)
|1〉B

+ β
(
|Ψ+〉MA − |Ψ−〉MA

)
|0〉B + β

(
|Φ+〉MA − |Φ−〉MA

)
|1〉B

= |Φ+〉MA(α|0〉B + β|1〉B) + |Φ−〉MA(α|0〉B − β|1〉B)

+ |Ψ+〉MA(α|1〉B + β|0〉B) + |Ψ−〉MA(α|1〉B − β|0〉B),
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we see that Alice’s measurements projects Bob’s qubit onto one of four possible states depending
on the outcome of her measurement. Therefore, Alice should send a classical message to Bob,
telling him to do one of the following four things (thus requiring 2 bits) depending on which
outcome she obtains:

Φ+ : do nothing

Φ− : apply Z

Ψ+ : apply X

Ψ− : apply ZX

The final result is that Bob holds the unknown state |ψ〉B on his qubit, B.
This protocol is called teleportation because Alice never actually sent a physical qubit to

Bob. Instead, the transfer of a qubit of quantum information is achieved by consuming one
shared entangled pair (or “e-bit”) and sending 2 bits of classical information. Note that because
Alice must send a classical message, superluminal information transfer is ruled out.

2 Classical and quantum algorithmic complexity

Having had an overview of quantum information science, let’s now dig a bit deeper into quantum
algorithms. In particular, we’ll try to argue that a quantum computer can, at least in principle,
efficiently perform a task that a classical computer cannot perform efficiently.

How can you tell if a quantum computer can outperform a classical computer? This is a sur-
prisingly subtle question, and ultimately, the answer depends on how you define “outperform.”
Do you just measure the amount of time it takes a classical computer to solve a problem and
then compare it to the amount of time taken by a quantum computer by calling some clock()

function? Do you or do you not take into account how much space it has taken up in memory?
Does the answer depend on which machine you use? Does it count if you cannot actually do
anything useful with your quantum computer? For example, while factoring is an interesting
problem, at least in the near term, quantum computers will be totally incapable of factoring
numbers as large as those used in RSA encryption schemes.

The challenge of demonstrating that an actual quantum computer (i.e. a real device sitting
in a laboratory) outperformed any classical machine is known as demonstrating “quantum
supremacy” [6]. Last year, Google claimed to have demonstrated quantum supremacy [7], yet
shortly afterward, IBM disputed this claim [8]. What’s the final verdict? That will be the
subject of the second problem set.

Here, we will assess the question by framing it in terms of algorithmic complexity. In
other words, we will characterize how difficult it is to solve a problem of input size n by how
many fundamental gate operations it takes, asymptotically and as a function of n, to solve
the problem. First we will discuss classical complexity classes, and then we will move on to
quantum complexity classes.

2.1 Classical algorithmic complexity

The most general binary function is a deterministic function f from n to m bits,

f : {0, 1}n −→ {0, 1}m. (27)

All computation can be recast in terms of Boolean functions, however, so we need only concern
ourselves with the case m = 1:

f : {0, 1}n −→ {0, 1} (28)
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There are 22
n

such functions, so that is still quite a lot of information!

Definition 2.1 Given a Boolean function f , we will say that f “accepts” an input x if f(x) = 1,
and f “rejects” an input x if f(x) = 0.

Definition 2.2 A language, L, is a set of bit strings of variable length, x ∈ {0, 1}∗, which are
accepted by a family of functions f∗ taking inputs of varying length,

L = {x ∈ {0, 1}∗ | f∗(x) = 1} . (29)

The question of computation can be reduced to the question of “finding the language” for
a given family of functions. For most problems, a näıve determination of the language takes an
extraordinary amount of time. Rather, a better way to think of computation is to ask whether
there’s a better, interesting way which reflects the structure of f , i.e. a circuit, which lets you
evaluate f more efficiently.

Let us first make a brief aside and note that it’s convenient to reformulate all problems as
decision problems, so that they are implemented by Boolean functions.

Example 2.3 Factoring can be recast as a decision problem: FACTOR: “Does x have a divisor
less that z and greater than 1?”

f(x, z) =

{
1 if ∃ y : 1 < y < z, y|x
0 otherwise

(30)

In this way, you can “factor” a number by starting with z = 2 and incrementing z until you
either find a value z∗ such that f(z∗) = 1 or you reach z =

√
x. Another classic problem in

computer science is the Hamiltonian path problem:

Example 2.4 The Hamiltonian path problem: HAMPATH: “Given a graph G = {vi, ea}, is there
a path that visits each edge ea exactly once?”

We will quantify “hardness” via the scaling of the resources needed to solve a problem as a
function of the input size. For example, for factoring above, the input size is n = log2 z+ log2 x
(the number of bits used to represent x and z).

Given a family of functions {fn}, where fn takes input of size n, suppose that the corre-
sponding family of circuits {Cn} computes the fn. Computationally “easy” problems are those
where the size of the circuits (measured in number of steps, or fundamental gate applications)
grows no faster than polynomially in n. This is the definition of the first complexity class that
we will encounter.

Definition 2.5 The complexity class P (polynomial time) is the set of languages that can be
solved by uniform circuits that grow at most polynomially with the input size. In other words,

P = {decision problems solved by poly(n) uniform circuit families} (31)

Although we won’t define it carefully, “uniform” basically means that it’s easy to go from a
circuit accepting input of size n to a circuit that accepts input of size n + 1. (More precisely,
we mean that the design of the circuit itself can be solved in a polynomial amount of time.)

Colloquially speaking, these problems are “easy” and can be solved “quickly.” However, in
practice, they can still scale pretty poorly. For example, finding Ryu-Takayanagi surfaces for n
boundary subregions in holographic 3D gravity scales like O(n12) [9]. So, it is still an “easy”
problem, in the sense that it’s in P, but n12 is pretty bad scaling.

By contrast, the class NP is what’s generally considered to be “hard” problems.
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Definition 2.6 The complexity class NP (nondeterministic polynomial) is the set of languages
L for which there exists a polynomial-size family of verifier circuits, V (x, y), such that

• If x ∈ L, then ∃ y such that V (x, y) = 1 (completeness)

• If x /∈ L, then V (x, y) = 0 ∀ y (soundness)

and where the size of the second input to the verifier is no more than polynomially larger than
the first input, i.e.

|y| ≤ poly(|x|). (32)

Colloquially speaking, NP is the set of functions that are hard to compute, but easy to check.

Example 2.7 FACTOR is in NP. Given a an input (x, z), the witness is

V (x, z; y) = (y|x) ∧ (y < z) (33)

(Note that “∧” means “AND”.)

Example 2.8 CIRCUIT-SAT is in NP: Given a polynomial-size Boolean circuit C, does there
exist an input accepted by C? In this case, the verifier is basically C itself!

V (C; y) = C(y) =

{
1 C accepts y
0 C rejects y

(34)

It’s easy to see that P ⊆ NP, and it is widely believed that P 6= NP, but this has not been
proven.

As another aside, while it’s not directly relevant to what we are going to do, it’s useful to
know about the concept of NP completeness.

Definition 2.9 A problem B efficiently reduces to A if any machine that solves A can be used
to solve B with at most polynomial overhead, i.e.,

B = A ◦R (35)

for a polynomial-size circuit R.

Definition 2.10 A problem A is NP-complete if A ∈ NP and any problem in NP is efficiently
reducible to A.

For example, CIRCUIT-SAT is NP-complete:

Theorem 2.11 (Cook) CIRCUIT-SAT is NP-complete.

A sketch of the proof is as follows. Given some language L ∈ NP, take its verifier V and
construct the function

f(V (x, ·)) =

{
1 if ∃ y → V (x, y) = 1
0 otherwise

(36)

Determining if x ∈ L is the same as asking whether there’s an input that f accepts. This
is precisely CIRCUIT-SAT! Another NP-complete problem is HAMPATH. However, FACTOR is not
NP-complete.

There are many other complexity classes, but the one that we will be particularly interested
is BPP.
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Definition 2.12 The complexity class BPP (bounded-error probabilistic polynomial time) is
the set of languages L solved by uniform, randomized polynomial-sized circuits.

The new key ingredient here is the randomization. In other words, we will be satisfied if we can
find a random circuit (i.e., whose outputs are probabilistic) such that

x ∈ L⇒ Pr(accept) ≥ 1
2 + δ

x /∈ L⇒ Pr(accept) ≤ 1
2 − δ

(37)

where δ is a constant that is independent of input size. In other words while the circuit may
not give the right answer all the time, if we repeat the computation enough times, then the
probability of getting the wrong answer on average decreases to zero. This is made precise by
the Chernoff bound :

Pr(majority is wrong after N trials) ≤ e−2Nδ2 (38)

The proof is left as an exercise (or alternatively some quick Google-fu).

2.2 Quantum algorithmic complexity

We went to the trouble of defining BPP because there is a clear quantum analogue:

Definition 2.13 The complexity class BQP (bounded-error quantum polynomial time) is the
set of languages L solved by uniform quantum polynomial-size circuits.

This leads us to what is literally a giga-e question:

BPP
?
6= BQP

This question essentially drives the quantum computing industry (or rather, the hope that
it is indeed an inequality). If BPP 6= BQP, then quantum computers can efficiently perform
certain algorithms that a classical randomized computer cannot, from the perspective of algo-
rithmic complexity.

Unfortunately, this question is probably pretty difficult to answer. Some circumstantial
evidence which supports this claim are related implications for other complexity classes. For
example:

• BPP 6= BQP would imply that P 6= PSPACE.2

• P 6= NP would imply BPP 6= BQP

So, what can we do? One strategy is to come up with examples of algorithms, like Shor’s
factoring algorithm, that we think solve difficult problems. Although we cannot prove that
FACTOR is not in P or BPP, it seems sufficiently difficult to inspire some confidence that a quan-
tum machine might be useful. We can also construct algorithms which exhibit non-exponential

2In semi-rigorous terms, PSPACE is the set of decision problems that can be solved with polynomial amounts
of storage space and without any restrictions on time. In particular, notice that NP ⊆ PSPACE. Given the
verifier V , systematically compute V (x, y) for each x and y. We can do this with polynomial amounts of space
because V itself is in P and |y| = poly(|x|). After each computation of V , if the result is V = 1, then a solution
has been found. Otherwise, clear the storage and keep computing. Eventually you either find a solution that V
accepts, or you exhaust all inputs and thus determine that there is no such solution, thus solving the problem!
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speed-ups, but are much more versatile, such as Grover’s algorithm. As we saw in the problem
set, Grover’s algorithm implements an unstructured database search, but achieves it in a time
Tquantum ∼ (Tclassical)

1/2.
The strategy that we will pursue here is to consider a different but simpler problem. Namely,

we will consider relativized computation, where, similarly to Deutsch’s problem, we will suppose
that we are provided with a black box, or oracle. The oracle computes a function f which is
unknown to us, and we assume that we incur no computational cost by calling the oracle.
The problem is then to determine f , and we characterize the problem’s difficulty by the query
complexity : How many times must we query the oracle in order to learn f? If f takes inputs
consisting of n bits, then of course the largest possible query complexity is 2n—we just try every
input. However, if a problem has an interesting structure, then the query complexity can be
much lower.

Denote by BPPO the set of problems that can be solved by uniform, randomized polynomial-
sized circuits with at most a polynomial number of queries to the oracle, and define BQPO

analogously. Let’s show that BPPO 6= BQPO.

2.3 Simon’s Problem

Let f : {0, 1}n → {0, 1}n−1 be some function that is unknown to us. However, we are promised
that

• f is two-to-one, and

• if f(x) = f(y) and x 6= y, then x = y ⊕ a, where a is a fixed bit string for all x and y.

Simon’s problem is to find a.
First, note that SIMON is not in BPPO. In order to find a, you need to find a “collision;” that

is, you need to find a pair (x, y) such that f(x) = f(y). Then, a = x⊕ y.3 Suppose you query
the oracle k times with k different inputs, giving you

(
k
2

)
pairs of outputs. The probability that

any random pair of inputs results in a collision is 1/(2n − 1). Therefore, the probability that
you find a collision after k queries is bounded by

Pr(success) ≤
(
k
2

)
2n − 1

=
1
2k(k − 1)

(2n − 1)
<
k2

2n
. (39)

Therefore, on average, you need to query the oracle k ∼ exp(n) times in order to have a
reasonable chance of success. This problem is hard!

On the other hand, O(n) uses of the following quantum circuit lets you solve the problem:

H
⊗n

H
⊗n

Uf

b measure|0〉⊗n

|0〉⊗n−1

41 2 3

measure

Figure 8: Circuit that solves Simon’s problem.

3Note that here, ⊕ means bitwise addition modulo 2, i.e. if x has binary digits x1x2 · · ·xn and y has binary
digits y1y2 · · · yn, then x⊕ y ≡ (x1 ⊕ y1)(x2 ⊕ y2) · · · (xn ⊕ yn).
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As before, we suppose that we have an oracle Uf , but this time it acts on 2n− 1 qubits as
follows:

Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉 (40)

Let’s analyze the circuit. The first n-fold Hadamard gate maps the first n qubits onto the
uniform superposition of all n-bit strings,

|0〉⊗n|0〉⊗n−1 1−→ 1√
2n

(
2n−1∑
x=0

|x〉

)
⊗ |0〉⊗n−1, (41)

which after acting with Uf gives us

2−→ 1√
2n

2n−1∑
x=0

|x〉|f(x)〉. (42)

Now we measure the second register. Suppose we get the outcome f(x0). This means that the
first register must get mapped to

3−→ 1√
2

(|x0〉+ |x0 ⊕ a〉) (43)

In the following calculation, I will use the notation:

x · y ≡ (x1 ∧ y1)⊕ (x2 ∧ y2)⊕ · · · ⊕ (xn ∧ yn) (44)

We now act with a final H⊗n on the first register.

4−→ 1√
2

(
1√
2n

∑
y

(−1)x0·y|y〉+
1√
2n

∑
y

(−1)(x0⊕a)·y|y〉

)
(45)

=
1√

2n+1

∑
y

[
(−1)x0·y + (−1)(x0⊕a)·y

]
|y〉 (46)

=
1√

2n−1

∑
y

(−1)x0·y
[

1 + (−1)a·y

2

]
|y〉 (47)

=
1√

2n−1

∑
a·y=0

(−1)x0·y|y〉 (48)

Therefore, when we measure the first register, we are uniformly sampling the solution space of
the binary linear system a ·y = 0. After running the algorithm O(n) times, we obtain n linearly
independent solutions yk of a · yk = 0, which allows us to solve the binary linear system for a.
We therefore see that SIMON is in BQPO.

2.4 The Solovay-Kitaev Theorem

An important point that we glossed over earlier, but which bears mentioning, is the question
of how algorithmic complexity depends on the gates that we are allowed to use. In particular,
we would be in trouble if the algorithmic complexity of a problem changed drastically if we
changed the gate set that we use to count the number of “operations” that we perform to solve
a problem.

Fortunately, this is not the case, and this is the essential content of the Solovay-Kitaev
theorem. Stated very roughly, the Solovay-Kitaev theorem says that:
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If a quantum computer A implements the universal gate set GA and solves a
given problem in time T , then a quantum computer B that implements a different
universal gate set GB can solve the same problem in time O(Tpoly(log T )).

In other words, up to a possible poly-log overhead, one universal quantum computer can simulate
another universal quantum computer, and so polynomial-time algorithms at least are hardware-
independent. BQP is a universal notion. (The same holds true for universal gate sets on classical
computers; one way to address the issue in the classical case is to instead formulate everything
in terms of Turing machines.)

It’s also worth noting that we have totally glossed over the question of tolerance. In other
words, with a quantum computer, the best we can do is hope to come within trace distance ε
of some target output state. This typically adds an O(1/ε) scaling to algorithmic complexity,
but we will not go into any further detail than that.
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