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GAPS IN THE RINGS OF SATURN

Did you know that Saturn is the most quantum planet? The symbol for Saturn is just a stylized version of the
reduced Planck constant!

Y (1)

Typography aside, Saturn is perhaps most notable for its magnificent rings, which (visibly) extend out to about
140, 000 km from the centre of the planet. Yet, despite their considerable extent, the rings are only about 10-100 km
thick.

The composition of the rings, their radial extent, and how they got there in the first place are all interesting
questions, but here, let’s investigate the band structure of the rings. Upon closer examination (with, e.g., the Cassini
probe), one quickly realizes that the rings are not one homogeneous disc, but rather are highly striated and filled with
gaps. An artist’s rendition of the gap structure is shown below in Fig. 1, indicating some of the most prominent gaps
in the rings.

FIG. 1. Sketch of Saturn’s D, C, B, A, and F rings. Boundaries between the rings are indicated by rough jagged lines. Some
of the most prominent gaps in the rings, as well as their radial locations, are shown.

What causes these gaps? Some gaps, such as the Encke Gap and Keeler Gap, harbour “trash collector” moonlets
that clear out their orbit of debris. The F-ring is held together by two “shepherd moons,” Prometheus and Pandora,
that confine the ring to a space in between their orbits. Then, there are gaps that are caused by orbital resonances
with Saturn’s moons.

An orbital resonance occurs between two circular orbits when the period of one orbit is a rational multiple of the
other. When this happens, bodies in the two orbits will keep meeting up at the same angular position over and over
again. Now suppose that the outer orbit is occupied by some large body, like a moon. Whenever a small body in the
inner resonant orbit meets up with the moon, it will feel a minuscule tug from the moon, but this effect coherently
builds up over time and eventually destabilizes the inner body’s orbit—it becomes elliptical (Fig 2). If you’re in an
elliptical orbit, however, at the apogee you will be moving slower than the other bodies around you that are in a
circular orbit. Therefore, collisions with these bodies drag you forward and eventually kick you into a new higher
circular orbit. In this way, moons can clear out gaps in the rings via orbital resonances.

So, is this a reasonable explanation? Let’s look at some data. The table below lists some properties of Saturn’s
seven largest moons (which together make up 99% of the mass orbiting Saturn), including their orbital period and
some resonant orbits.

Moon mass (×1018 kg) orbit (×106 m) T (Earth days) R2:1 (×106 m) R3:1 (×106 m) R3:2 (×106 m)

Titan 134000 1222 16 770 587 993

Rhea 2310 527 4.5 332 253 402

Iapetus 1810 3561 79 2243 1712 2718

Dione 1100 377 2.7 237 181 288

Tethys 617 295 1.9 186 142 225

Enceladus 108 238 1.4 150 114 182

Mimas 38 185 0.9 117 89 141
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FIG. 2. A small body of mass µ gets perturbed by the moon of mass m.

The largest moon for which an orbit with half its period lies inside the ring is Mimas, with R2:1 = 117 × 106 m.
This is pretty much the location of the Huygens gap, and indeed, it is claimed that the gap is due to a resonance with
Mimas!

What about higher resonances, for example a 3:1 period ratio or a 4:1 ratio, where the resonant orbit is closer to
Saturn? Referring to the 3:1 column in the table, there don’t appear to be any evident structures at R3:1 for Mimas
or Enceladus. As you move closer to Saturn, the tug from the moons gets weaker, but since you’re orbiting faster,
you have resonant “encounters” with the moons more often. Judging from the data, it seems that the strength of the
encounter is more important than the frequency—let’s try to analyze this.

A. The effect of a single encounter

Consider the following simple setup. At the centre of our reference frame we have Saturn, with mass M , and at
some radius Rmoon, one of its moons orbits in a circular orbit. Consider now a test mass µ which orbits at R < Rmoon,
and let’s suppose that its orbital period is a rational multiple of Tmoon, i.e.,

T

Tmoon
=
k

n
k, n ∈ N, k < n. (2)

Let’s work in a reference frame that rotates with the moon so that the moon appears stationary at θ = 0 and the
test mass rotates with an angular speed equal to

ωeff = ω − ωmoon = 2π

(
1

T
− 1

Tmoon

)
> 0 . (3)

To model the effect that the moon has on the test mass, let’s suppose that the interactions are dominated by the
“encounters” that happen whenever the test particle is at θ = 0. In particular, what I’m proposing is that we quantify
the effect by the following impulse:

I =

∫
∆θ

Fmoon dt ≈ Fmoon(θ = 0)
∆θ

ωeff
x̂ (4)

Here, Fmoon is the force that the moon exerts on the test mass, and ∆θ is some small angular wedge (Fig. 3). This
should be a reasonable model provided that the test mass is far enough away from the moon, or in other words, that
encounters aren’t prolonged events. Moreover, it’s reasonable that there should be some minimum distance that must
separate the moon from the test mass, since at some point the moon acts like a trash collector.
Fmoon is just given by Newton’s law,

Fmoon =
Gmµ

(Rmoon −R)2
, (5)

so plugging this into I and using the expression (3) for ωeff , we find that

|I| = ∆θ

2π

Gmµ

R2
moon/Tmoon

1

(Tmoon/T − 1) (1−R/Rmoon)
2 . (6)
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FIG. 3. Model the effect of the moon as discrete impulses when the test mass is nearby.

Noticed that I pulled out a factor of R2
moon/Tmoon in the denominator. Next let’s use the relation T/Tmoon = k/n,

and we also know that

R

Rmoon
=

(
T

Tmoon

)2/3

=

(
k

n

)2/3

, (7)

so

|I| = ∆θ

2π

Gmµ

R2
moon/Tmoon

1

(n/k − 1)
(
1− (k/n)2/3

)2 . (8)

The prefactors in Eq. (6) are just a constant impulse, so the most important part is the numerical factor

w̃(k/n) ≡ 1

(n/k − 1)
(
1− (k/n)2/3

)2 . (9)

This tells us how the strength of a single encounter depends on the orbital ratio k/n.

B. The effect of multiple encounters over time

Next, let’s account for the fact that different orbital ratios have different encounter rates. The first question that
we want to answer is: Over k periods of the moon, how many encounters occur?

Suppose the test particle begins at θ = 0 at t = 0. Then its angular position over time will be

θ(t) = ωefft . (10)

Encounters happen when θ(t) = 2πj for j ∈ N. Solving for t, we find that

tj =
j

n/k − 1
Tmoon . (11)

If we count the encounter at t = 0 as the first encounter, then t = kTmoon will be the start of a new cycle, which
happens when

k =
j

n/k − 1
⇒ j = n− k . (12)

Therefore, during k periods of the moon, n− k encounters occur.
Consequently, let’s define the normalized numerical factor

w(k/n) =
n− k
k

w̃(k/n) =
1(

1− (k/n)2/3
)2 . (13)

This tells us how the moon affects a test mass with orbital ratio k/n, normalized per unit time. The factor w(k/n)
blows up as k/n→ 1, and so it seems like being closer to the moon is favoured.



4

C. Discussion

The result above seems to explain why we see 2:1 resonances, but not higher simple resonances. But, what about
other resonances like 17:11? The rationals are dense in the real numbers after all, so why are there rings at all?

I think that the answer is that it’s also important where the encounters occur in the nonrotating frame. For example,
if the moon and a test mass with a 2:1 resonance have an encounter at θ = 0, then the encounter keeps happening at
θ = 2πj = 0 (mod 2π). Since the rationale is that the moon disturbs the test mass’ circular orbit and pushes it into
an elliptical orbit, it’s important that the perturbation keeps happening at the same location so that the test mass’
orbit gets more and more deformed. On the other hand, for general n/k, encounters happen at

θj = 2π
j

n/k − 1
, (14)

so while encounters at a given angle will eventually start repeating, the test mass receives a lot of kicks at different
angular positions before this happens.

One possible issue with this explanation is that it means that a 3:2 resonance should also have a big effect; the
encounter always happens at θ = 0. However, looking back at the table, R3:2 for Mimas happens... precisely where the
F-ring is located! It could be that the effect of the shepherd moons is enough to dominate over the orbital resonance
effects, but either way, it seems like orbital resonances alone are not the end of the story.

D. Exercise

In the analysis above, we tacitly assumed that the test mass orbits in the same direction as the moon. What if the
test mass orbits in the opposite direction, i.e., in a retrograde orbit? What is w(k/n) in this case?

E. A bonus challenge

We also simply assumed that orbital resonances were indeed a destabilizing mechanism. It should be possible to
derive this. Feel free to attack this challenge however you see fit; however, here is what I think is a promising line of
attack in case you want some inspiration.

Assume that the test mass µ is so small that it doesn’t affect the orbit of the moon, which moves in a perfect
circular orbit around Saturn. In the co-rotating frame, the forces acting on the test mass are

F = FY + Fmoon + Fcentrifugal + FCoriolis (15)

= −GMµ
r

|r|3
−Gmµ (r−Rmoon)

|r−Rmoon|3
− µωmoon × (ωmoon × r)− 2µωmoon × ṙ (16)

r is the position of the test mass, and in the diagram below, I’ve chosen Rmoon = Rmoonx̂ and ωmoon = ωmoonẑ. Were
it not for Fmoon, the test mass would move on the circular orbit

r0(t) = (x0(t), y0(t)) = (R cosωefft, R sinωefft) . (17)

My suggestion is as follows: Write down Newton’s equation for the test mass F = µr̈, expand r(t) in a perturbation
series,

r(t) = r0(t) + r1(t) + . . . (18)

and find the equation of motion for r1(t). I suspect that it will become perturbatively unstable when there is an
orbital resonance.
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FIG. 4. Set-up for the bonus challenge.
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