Problem 1

Figure 1: A point on Sirius emitting three light rays, R = 8.5 ly away, and the detectors on Earth (nothing drawn to scale, neither absolute nor relative).

Referring to Fig. 1, the difference in path lengths between detectors A and B is $\delta = d \sin \theta \approx d\theta$, and the maximum value that θ takes is $\theta \approx \tan \theta = r/R$. Therefore,

$$\phi \in \left[-2\pi \frac{\delta}{\lambda}, 2\pi \frac{\delta}{\lambda}\right] \approx \left[-2\pi \frac{rd}{\lambda R}, 2\pi \frac{rd}{\lambda R}\right] \,.$$

According to the Wien law, the peak wavelength at T = 10000 K is

$$\lambda = \frac{3 \times 10^{-3} \ m \cdot K}{T} = 3 \times 10^{-7} \ m \, .$$

Plugging in the numbers,

$$2\pi \frac{rd}{\lambda R} = 2\pi \frac{rd}{3 \times 10^{-7} \cdot 8.5 \cdot \pi \times 10^7 \cdot 3 \times 10^8} \approx \frac{rd}{4} \times 10^{-9} \ m^{-2} \,,$$

so ϕ ranges between plus and minus that.

Problem 2

The phase $\phi(x)$ is just given by

$$\phi(x) = 2\pi \frac{xd}{\lambda R} \,.$$

The correlator is hence

$$C_{AB} = f_0^2 \int_{-r}^{r} dx \ e^{-2x^2/r^2} \cos\left(2 \cdot 2\pi \frac{xd}{\lambda R}\right) \approx f_0^2 \int_{-\infty}^{\infty} dx \ e^{-2x^2/r^2} \cos\left(4\pi \frac{xd}{\lambda R}\right) \,.$$

Then, it's just algebra. Let $\alpha = 2/r^2$, $\beta = 4\pi d/\lambda R$.

$$C_{AB} = f_0^2 \int_{-\infty}^{\infty} dx \ e^{-\alpha x^2} \cos(\beta x)$$

= $f_0^2 \int_{-\infty}^{\infty} dx \ e^{-\alpha x^2} \frac{1}{2} \left(e^{i\beta x} + e^{-i\beta x} \right)$
= $\frac{f_0^2}{2} \int_{-\infty}^{\infty} dx \ \left(e^{-\alpha (x - i\beta/2\alpha)^2 - \beta^2/4\alpha} + e^{-\alpha (x + i\beta/2\alpha)^2 - \beta^2/4\alpha} \right)$
= $\frac{f_0^2}{2} e^{-\beta^2/4\alpha} \left(\sqrt{\frac{\pi}{\alpha}} + \sqrt{\frac{\pi}{\alpha}} \right)$
= $f_0^2 \ e^{-\beta^2/4\alpha} \sqrt{\frac{\pi}{\alpha}}$

Problem 3

First normalize the correlator, i.e., $C_{AB}(d=0) = f_0^2 \sqrt{\pi/\alpha}$, so

$$\Gamma(d) = e^{-\beta^2/4\alpha} = \exp\left(-\frac{1}{2}\left(\frac{2\pi rd}{\lambda R}\right)^2\right) \tag{1}$$

Plugging in r/R = 2 mas, or about $10^{-8} rad$, produces a pretty good fit (taking $\lambda = 3 \times 10^{-7} m$ as before).

