Some references on self-adjoint extensions:

N. I. Akhiezer & I. M. Glazman, Theory of Linear Operators in Hilbert Space

Volume II, Ch VII, somewhat terse but an excellent reference. Note the unconventional definition of point and continuous spectrum.

M. A. Naimark. Linear Differential Operators

Volume II, Ch IV.14 for self-adjoint extensions, Ch V for the specific application to differential operators

R. T. W. Martin. Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators. https://uwspace.uwaterloo.ca/handle/10012/3698

Part 2 Ch 4 for a self-contained account of the theory of self-adjoint extensions, Part 3 Ch 9 for a discussion of Krein's formula

02. 21, 2014 Journal Club: Self-Adjoint Extensions _____ 1. Inhoduction: the Momentum Operator · consider the momentum operator for a 1D particle in QM p = -idQ: To the momentum op. 2df-adjoint? as yes 6 no c) maybe - depends on the domain Physical Inhuition: · if self-adjoint -> 3 monuchum eigenstates, observable - states of definite momentum ex1 real line (-00,00), I? atales of default p? - yes: plane wares ex 2 (a, oc): . only states of definite p in one direction not self-adjoint ex 3 (a, b): . sometimes I states of definite p depundes on boundary conditions · cheated a bit p above is not an operator per se · need to specify domain and H · on op is self-adjoint if D(T) = D(T*) Theory of Self-Adjoint Extensions - tells you under what circumstances I self-adjoint realizations - tells you how to construct self-odjoint operators - - formal theory of boundary conditions

2. Basic Notions Def" Let T: D(T) cH -> R(T) cH be a linear operator. The domain of its adjoint T* is $D(T^*) = \left\{ q \in \mathcal{H} : \exists h_q \in \mathcal{H}. (Tflq) = \langle flh_q \rangle \forall f \in D(T) \right\}$ and T*: q >> T*q = hq Def T is Hermitran if (Tfla) = (flTa) Y f.a = D(T) Def" I is symmetrice if it is Hermitian ! denisely defined Del" A symme op. T is self-adjoint if T=T*, ic., D(T)=D(T*) ex Momentum operator on the interval (a,b), $\mathcal{H} = \mathcal{L}^{2}(a,b)$, $(f \mid q) = \int_{a}^{b} f^{+}(x) q(x) dx$ Q: largest domain on which $p = -i\partial_x$ may act? $D(P_{max}) = \{ \Psi \in L^2(a,b) \mid \Psi \in AC(a,b), \Psi' \in L^2(a,b) \}$ $\frac{\cdot \left[it \quad f, g \in \mathcal{D}(P_{max})\right]}{\langle P_{mut}f \mid g \rangle} = \int_{0}^{b} \left(-if'(x)\right)^{*} g(x) dx$ $= i f^{*}(x) q(x) |_{\alpha}^{b} - \int f^{*}(x) \cdot i q(x) dx$ $= i \left[f^{*}(b) g(b) - f(a) g(a) \right] + \int_{a}^{b} f^{*}(x) \left(- i g'(x) \right) dx$ (FIPmaxg) note: if f(a) = f(b) = 0 this vanishus! Define the symm. op. P_a : $D(P_a) = \{ \psi \in D(P_{max}) \mid \psi(a) = \psi(b) = 0 \}$ V Hermitian / Densely-defined (eq. squar-well NP16 eigenbasis)

· D(Po) is smallest possible domain of def" for a symm. realization of y = -idx $\rho = -i \partial x$ $(P_{e})^{*} = P_{max}$ Hie adjoint · Po ≠ Pmax (sime D(Po) ≠ D(Pmax) Def" T' is an extension of T if D(T) = D(T') and T'f = If for fe D(T) We write TCT' Prop" T C T* ex Momunhum operator reed f*(b)g(b) - f(a)g(a) to vanish · sps. $f(a) = f(b) = \frac{f'(a)(g(b) - g(a))^2}{2} = 0$ => also need g(b) = g(a) Dorme $P' = D(P') = \{ \Psi \in D(P_{max}) \mid \Psi(a) = \Psi(b) \}$ Nole: Pocp · D(P'*) = D(P) => P' is a self-adjoint extension of P. all 2-adj-eules parametrized by $\theta \in [0, 2\pi)$ $\mathcal{D}(P'_{a}) = \{ \Psi \in \mathcal{D}(P_{max}) \mid \Psi(a) = e^{i\theta} \Psi(b) \}$ Prop" IF TCT', then (T')* CT* for T symm \Rightarrow T c T c (T') c T* constructing sadj- exts <> "borrowing" from D(T*) so that D(T')-D(T'*)

3. Von Neumann Formulas & Cayley Transform Thrm I Let S: closed symm. op. Then D(S*) = D(S) + N+ + Nwhere $N \pm := \ker(S^{\dagger} \mp i) = (\Re(S \pm i))^{\perp}$ Note: N+ are the deficiency spaces of 5 · eigenspaces of 5th to eigenvalue ti. i.e. $\phi \in N_{\pm} \iff S^{*} \phi : \pm i \phi$ · Thim I fells us D(5*) D(5) differ only by reduces in the deficiency spaces The I Let S: cloved symm. op a) S' is a closed symm. ext. of S iff I closed subspaces FISNE and an isometry I: F- -> F+ such that $\mathfrak{D}(\mathfrak{G}') = \mathfrak{D}(\mathfrak{G}) + \{q + \sqrt{q} \quad q \in \mathbb{F}_{-}\}$ b) S' is self-adjoint iff F+=N+, F==N-Dot n = := dim N + are the deficiency indices of S The II => self-adjoint extensions only exist if n+= n-(why? wed isometry $\tilde{V}: N_- \rightarrow N_+$) · This I II are in principle constructive, but rather unwieldy. . More algorithmic: Cayley transform • Let S: closed symm. op. • Define $V := (S-i)(S+i)^{-1}$ · Can show that V is an isometry on its domain . I dea: construct unitary extensions of V Il usually issundness sumitarios easier to work with than sym. & -adj Il ope since unitaries act on all of H

_____ · heuristic: V is "missing" the dimensions spanned by N- from its domain. No from its range. . if we can find an isometry $\tilde{V}: N_- \rightarrow N_+$ Deline U: { 4 -> V4 4 e HON. -> U is now unifury Invarse transform gives $T = -i(U+1)(U-1)^{-1}$ self-adjoint $(U(n_2)-parum.)$ Example: Momenhum operator on L2(0,1) O Deficiency opaces: $P_{\alpha}^{*}\phi = \pm i\phi \rightarrow -i\phi(\alpha) = \pm i\phi$ $\phi'(x) = \mp \phi = \phi(x) = C e^{\mp X}$ \rightarrow both are square-integrable on (0,1), i.e. in $7t = L^2(0,1)$ \rightarrow choose delicionary vectors $V_{t}(x) = e^{1-x}$ (chosen so $||V_{t}|| = ||V_{t}||$) $\sqrt{-(x)} = e^{x}$ -(-=> N+ = QV+, N_ = QV- N+ = N- = 1 => cell-adjoint extractions exist, U(1) family $Cayley transform: N := (P_o - i)(P_o + i)^{-1}$ $(P_o + i)f = q \Rightarrow -if'(x) + if(x) = q(x)$ (...) $f(x) = ie^{x} \int_{x}^{x} e^{-y} q(y) dy$ $\mathcal{D}_{o} \ \forall : q \mapsto (-i\partial_{x} - i)(ie^{x} \int e^{y} q(y) dy) = \lambda e^{x} \int e^{y} q(y) dy + q(x)$ (not too illuminations, but want to demonstrate calculations) • isometries $b/w \to N+$ given by $e^{\chi} \longrightarrow e^{i\chi} e^{i-\chi} \propto \epsilon [0, 2\pi)$ (clear from del^{p} of V that dimensions her $(P_{a}^{*}+i) = N-i\omega$ missing, restoud here) => U(1) family of self-adjoint oper Pa = -i(Va+1)(Va-1)-'

 def^{2} , $D(P_{\alpha}) = R(U_{\alpha} - 1) = H$ From $R(P_{\alpha}) = R(V_{\alpha+1}) = 14$ How to relate to boundary condition? consider, span $q \in D(P_{\alpha})$, i.e. $q = (V_{\alpha}-1)f$ for some $f \in \mathcal{H}$ $=> q = \begin{cases} Vf - f & \text{if } f \in H \ominus N_{-} \\ a & e^{i\alpha}e^{i-\alpha} - e^{\alpha} & \text{if } f \in N_{-} \end{cases}$ $\frac{q(u) = ee^{i\alpha} - 1}{q(u) = e^{i\alpha} - e} = \frac{q(u)}{q(u)} = \frac{e^{i\alpha} - e}{e^{i\alpha} - 1}$ $\frac{d}{d} = \frac{d}{d} = \frac{d}$ 1