Demystifying Wheeler-de Witt

Aidan Chatwin-Davies

July 5, 2016

1 Exercise: Minisuperspace

Consider the *minisuperspace* that consists of all closed homogeneous and isotropic FRW spacetimes in $1+3$ dimensions that contain a homogeneous and isotropic real scalar field, Φ. For fun, let's also suppose that there is a (non-negative) cosmological constant Λ that is fixed to some value, *i.e.*, we don't consider is as part of the minisuperspace. In a suitable coordinate system, the line element of the spacetime manifold reads

$$
ds^{2} = \frac{3}{\Lambda} \left(-dt^{2} + a^{2}(t) d\Omega_{3}^{2} \right),
$$
\n(1)

where $d\Omega_3^2$ is the round metric on the 3-sphere. In this setting, a 3-geometry and matter configuration is entirely characterized by only two real numbers: the value of the scale factor, b, and the value of the scalar field, Φ_0 . As such, the wavefunctional over geometries and matter configurations reduces to a wavefunction with two arguments: $\Psi[\gamma_{ij}(\mathbf{x}), {\Phi(\mathbf{x})}] \equiv \Psi(b, \Phi_0)$. In this exercise, we will deduce the form of the Wheeler-De Witt equation that this wavefunction obeys.

(a) In units where $G = \hbar = c = 1$, the Einstein-Hilbert action is

$$
S_{EH} = -\frac{1}{16\pi} \int d^4x \sqrt{-g} \left(R - 2\Lambda \right) \tag{2}
$$

and the action of a free scalar field is

$$
S_{\Phi} = \frac{1}{2} \int d^4 x \sqrt{-g} \left(g^{\mu \nu} \Phi_{,\mu} \Phi_{,\nu} + m^2 \Phi^2 \right) . \tag{3}
$$

Use the form of the metric above and the fact that $\Phi(t)$ depends only on t to write down the total action $S = S_{EH} + S_{\Phi}$. You may find it convenient to express your answer in terms of the following quantities:

$$
H^2 \equiv \frac{\Lambda}{3} \qquad \phi \equiv \sqrt{\frac{4\pi}{3}} \Phi \qquad \mu^2 \equiv \frac{3}{\Lambda} m^2 \tag{4}
$$

(b) We can read off the Lagrangian $\mathcal L$ from the total action $S = \int dt \mathcal L$. Take a and ϕ to be the canonical coordinates and define their conjugate momenta via

$$
p_a = \frac{\partial \mathcal{L}}{\partial \dot{a}} \qquad p_\phi = \frac{\partial \mathcal{L}}{\partial \dot{\phi}},\tag{5}
$$

where a dot over a quantity denotes a derivative with respect to t . Perform a Legendre transformation and write down the Hamiltonian H in terms of a, ϕ , p_a , and p_ϕ . Note that H has no explicit dependence on the coordinate time t; at any given time t_0 , H depends only on the values of $a(t_0) \equiv b$, $\phi(t_0) \equiv \chi$, $p_a(t_0) \equiv p_b$, and $p_{\phi}(t_0) \equiv p_{\chi}$. As such, to emphasize that H is purely a function of 3-geometry and the matter configuration, we can write $\mathcal{H} = \mathcal{H}(b, \chi, p_b, p_\chi)$.

- (c) Note that there do not seem to be any secondary constraints for the momenta above, *i.e.*, \dot{p}_a , $\dot{p}_\phi \neq 0$. Why is this? Is it still correct to write $\mathcal{H} = 0$?
- (d) Make the identification

$$
p_b \to -i\frac{\partial}{\partial b} \qquad p_\chi \to -i\frac{\partial}{\partial \chi} \tag{6}
$$

and write down the explicit form of the Wheeler-de Witt equation $\mathcal{H}\Psi(b,\chi)=0$.

(e) Express the Wheeler-De Witt operator $\mathcal{H}(b, \chi, \partial_b, \partial_\chi)$ in the following form:

$$
\mathcal{H} = \frac{1}{2} G^{AB} \partial_A \partial_B + \mathcal{V} \tag{7}
$$

 G_{AB} and V are the Wheeler-De Witt metric and potential for minisuperspace in the coordinates $x^A = (b, \chi)$. What is the signature of the Wheeler-De Witt metric?